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Homoclinic tangency and chaotic attractor disappearance in a dripping faucet experiment

Reynaldo D. Pintd and JoseC. Sartorelll
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(Received 20 July 1999

A sequence of attractors, reconstructed from interdrops time series data of a leaky faucet experiment, is
analyzed as a function of the mean dripping rate. We established the presence of a saddle point and its
manifolds in the attractors and we explained the dynamical changes in the system using the evolution of the
manifolds of the saddle point, as suggested by the orbits traced in first return maps. The sequence starts at a
fixed point and evolves to an invariant torus of increasing diamteropf bifurcation that pushes the
unstable manifold towards the stable one. The torus breaks up and the system shows a chaotic attractor
bounded by the unstable manifold of the saddle. With the attractor expansion the unstable manifold becomes
tangential to the stable one, giving rise to the sudden disappearance of the chaotic attractor, which is an
experimental observation of a so called chaotic blue sky catastrophe.

PACS numbd(s): 05.45-a, 47.55.Dz

The theory of nonlinear dynamical systerfi,2] has lite drops formatior{21], bifurcations[22,23, crises and in-
merged problems of totally different subjects in a commontermittencies[18,20, long-range anticorrelationf22], and
frame: the quadratic map came from population dynamicscale lawq23].
models[3]; the Van de Pol oscillator was derived from a  As a successful and comprehensive interpretation of the
heart mode[3]; neural networks are simplifications of ideas drop formation dynamics by analytical models or computa-
from neurosciencd3]; methods of control of chaos have tional simulationg16,24,23 has not been achieved yet, we
been applied to cardiac arrhythnji4] and epileptic diseases have applied topological analysis to sequences of attractors
[5]. A sudden disappearance of a chaotic attractor, a chaotfd'st-return mapsT,.; vs T,) reconstructed from series

blue sky catastrophg6—8], which occurs due to a ho- {Tn} Of the delay time between successive drops.
moclinic tangency between the manifolds of a saddle point The measurements were made with the faucet attached to

a large reservoir, see Refd.8,19 for details. In our experi-
ment the faucet is a cylindrical glass nozzB mm inner
diametey attached to a deionized water reser8i®0 |). The
delay time between successive drops was measured with a
time counter circuitry, with a resolution ofuls, inserted in a

PC slot. The input signals are voltage pulses, induced in a

was found in simulations of the Van der Pol oscillator. Tan-
gencies between manifolds of chaotic attractors play impor
tant roles in dynamical systeni8]; attractors which present
homaoclinic tangencies are called quasiattracf@fs11] (ab-
breviation, of “quasistochastic attractors”they are struc-

turally unstable ?‘”d '_[heir applications concern the underFesistor, defined by the beginnirignding of the scattering
standing of the biological memory mechanisf$ of a laser beam focused on a phototransigtorseries with
Although dripping faucets do not belong to the class ofig regjstor when the drop startéends to cross the laser
systems whose dynamics is the result of evolutionary propeam. The width of the pulse is the time interalwheren
cesses, as the biological systems, the time series of interdrg@ the drop numbey and the delay time between two pulses
intervals[12] has shown the same power law long-range anis the crossing timedt,), of a drop through the laser beam,
ticorrelations and non-Gaussian behavior presented by the, that the total time interval i§,=t,+ dt,. We can setup
time series of interbeat intervals of healthy hedit3]. An-  the drop rate {= 1KT)) in two ways:(a) by feeding back the
other similarity between attractors of dripping faucets andyater reservoir to keep the heightof the water level and
the biological ones was found in recent studies on an isolategelecting the drop rate by openirigiosing a needle valve
colony of ants, where explorative behavior was stimulatediriven by a step motor which is controlled by a microcom-
[14]. Nevertheless, there is no model or explanation for theputer. For a given drop rate we have constructed first return
similarities found between dripping faucet experiments andnapsT,,, vs T,; (b) by fixing the opening of the needle
biological systems. valve, turning off the water supply, letting the water level
In 1977, it was suggestdd5] that a dripping faucet could decrease naturally, and so the dripping rate. Therefore, the
present complex behavior. The first dripping faucet expericontrol parameter, the heightof the water level, varies as
ment was reported in 1988.6] and a simple mass-spring h~hy,—néV/A, whereh, is the initial height,sV the drops
model was used to explain a few features of the drippingnean volume, and\ is the area of the water reservoir sur-
dynamics. Since then, a wide range of nonlinear behaviorface. In this case, bifurcation diagrarg vs n were con-
has been observed, such as strange attrait@rs2Q, satel-  structed.
A little bit above 40 drops/s the water flux becomes con-
tinuous at the laser-detector level. Therefore, we opened the
*Electronic address: reynaldo@fge.if.usp.br faucet, reaching a dripping rate just before the water flux
Electronic address: sartorelli@if.usp.br became continuous. For an overview, we took first a time
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FIG. 1. Bifurcation diagram obtained by letting the water level
of a 50l reservoirs decrease naturally with the dripping. The time
series{T,} is 100000 drops long, but we plotted just one point
every four to let the figure clear.

33 4
series with the nozzle attached to a smaller reseriadirl) fs
and we turned the water supply off to obtain the bifurcation £
diagramT,, vs. n shown in Fig. 1. Four different behaviors N
were identified: Hopf, Heon-like, chaotic 1 and chaotic 2 as I—E

a function of the water level decreasing. It was observed a 30 -
sudden change in the mean drop frequency, and the orbits
jump from chaotic 1 to the chaotic 2 region, generating an-
other attractors profile.

In order to investigate the route following the successive

attractors, we repeated the measurements with the nozzle at- 27 -
tached to a large water reserv@00 |) and turning the water
supply on. As before, we setup the system to the highest T T T T T
dripping rate, and we closed the faucet step by step. Imme- 27 30 33
diately after each step, we took a series 65536 interdrop T (ms)

n

times long. As we had already known that the system re-
quires a long time to stabilize, we subdivided each series in g 2. (g First return map of the transient subseries Bd.

an unstable subseries taking the first 16 384 points, and in @njarged view of the square region above. The saddle point S1 at
stable sub-series taking the last 16 384 interdrop times. A~ 29 ms,~29 ms is represented by a star. The griyack) lines
sequence of 49 stable series, named 8046 drops/sup to  are pictorial representations of the local unstabtablé manifolds.

B48 (24.78 drops/s was obtained. In this way, we obtained The saddle point and its manifolds were inferred following the or-
the behaviors sequence: a stable fixed point, Hopf bifurcabits represented by the smaller black arrows.

tion, Henon-like, chaotic 1, and chaotic 2, as before. The

mean drop rate decreases smoothly until the end of the cha- gyet 41.127-29 supposed that all points lving in a region
otic 1 region when a sudden change in the dripping rate 3 9 supp P ying g

- . * __ * ~
occurs, from 37.29 drops/s to 24.93 drops/s. After the tranf?1r0und the fixed point™ =f(x*) can be transformed fx,}

sition we went back by opening the faucet, and we found n the vicinity of x* to extract the unstable periodic orbits
hysteresis of 40 steps to achieve both the transition to high IUPO s from a f|n|.te amou_nE Of data gf a one-dimensional
dripping rates and the attractors profile at the end of thé&ystem. The density functiop(x) has inverse square root
chaotic 1 region. type singularities at the fixed points, and a histogram plot
Figure Za) shows the reconstructid@6] (first return map  approximation top(x) will have a sharp peak at=x*.

Th+1 Vs Ty) of the dynamical attractor corresponding to the Some spurious peaks appearpifx) either due to singulari-

unstable subseries B44, in which the control parameter varieges not related to fixed points, or due to zeros of the deriva-
so slowly that one can follow the sudden change in the atﬁ-

behavi . bi h . I|ve of the transformation functior= g(x,k). They general-
tractors behavior. By tracing some orbits, as shown in smal; oy the method for a system with an arbitrary embedded
black arrows in Fig. @), we obtained evidences for the ex-

) . o di ion(d) to obtain th tabl iodic orbits by doi
istence of a saddle point S1 &9 ms, 29 mp position, imension(d) to obtain the unstable periodic orbits by doing

the transformation
represented by an open star. The gray large arrows are loca

representations of the unstable manifolds of S1 while the

black ones are local representations of the stable manifolds. 2,=(1-S) Nzy:1— S0z, (1)
To confirm the existence of this saddle point we looked for a

numerical method to extract unstable periodic orbits embed-

ded in a chaotic attractor. where
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FIG. 3. First return map of the time series obtained at the tran-
sition region with the faucet nozzle inclined four degrees with the
vertical. The black and gray arrows represent the local directions
followed by many orbits, which allowed us to infer the saddle point
position, represented by a star, while the thin black line represents
the directions followed in the transition chaotie-Zhaotic 1. The
time series{T,} is 16 384 drops long, but we plotted just the first
2048 points to let the figure clear.
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FIG. 4. (a) Histogram obtained applying the fixed point trans-
formation to the data shown in Fig. 3. The S1 saddle point is given
by the sharp peak positiorib) Corresponding contour graph to
localize the peak position at{28.3 ms,~28.3 ms.

plied this technique for the parameter valugs:2. We also
usedx=5, and 100 random matrices.

Therefore, the method above requires that the neighbor-
hood of the UPO be visited many times, but in our case the
orbit pass just once close to the saddle point when the B43-
B44 transition occurs. We could not apply any kind of per-
turbations to push the orbits to the neighborhood of S1 be-
cause any small perturbation on the hanged water column is
enough to precipitate the B43-B44 transition. Nevertheless,

{z,} are the reconstructed vectors from scalar time seriewe could push the orbits to the neighborhood of the saddle

{Xn},

—(51 ;2 2
2,=(2.,25.Z5, - .

. er‘I—d—l)T!
4

dyt_
. !Zn)T_(Xn 1Xn—1:Xp-2, « -

R is adXxd random matrix in the range—1,1] and« is the
magnitude of the randomization. The fixed points are givergstablish the saddle point position embedded in the first re-
by the peak positions g#(z). As the locations of the spuri- turn map of the series shown in Fig. 3, we applied the fixed
ous peaks depend on tkgarameter, they are eliminated by point transform technique developed by 8bal. [27-29,
taking the averagép(z)) for many different values picked and in Fig. 4a) is shown the histogram approximation to

up randomly. As the attractors reconstruction in two-p(z), the strong sharp peak corresponds to the saddle point.
dimensional embedded space are enough unfolded, we aper better visualization of the peak position is shown in Fig.

point by inclining the faucet nozzle four degrees with the
vertical. In this condition, both attractors are now visited in
an intermittent way, as shown in Fig. 3 instead of the sudden
transition shown in Fig. @). The orbits return from chaotic

2 region to the chaotic 1 region through the strong fettm
black line in Fig. 3 at the right of the chaotic 1 region. To
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FIG. 5. First return map of the BOp series obtained by tapping &
the nozzle with the finger tip to destabilize the BO stable fixed point. £ @
The black and gray arrows represent the local directions followed = 28.81 %
by many orbits(thin black lineg, which allowed us to infer the [y oﬁvﬁ 80
saddle point position, represented by a star. :

4(b) the contour graphs around the saddle poin2&t3 ms, 7o =
28.3 mg position. In Fig. 3 we have also drawn the mani- @ §.

folds of the saddle point, compatible with the trace of some - . .
orbits. The strong folds of the returning orbits, represented 284 28.8 29.2
by a black line, is an evidence of the occurrence of a ho- T (ms)
moclinic tangency of the S1 manifolds. n

) We al_so _verified if this saddle point remains in other FIG. 6. (a) Histogram obtained applying the fixed point trans-
higher dripping attractors. We setup the system to reproducgmation to the data shown in Fig. 5. The S1 saddle point is given

the BO stable fixed point , and then we disturbed the hange(;,ly the sharp peak positiorib) Corresponding contour graph to

water column by tapping the nozzle with the finger tip. The|gcalize the peak position at(28.8 ms,~28.8 ms.
orbit spread and after then returned to the stable fixed point.

The returning orbits were traced, as shown in Fig. 5. Wefurcation. A torus attractofsubseries B10from the Hopf
applied again the fixed point transform technique to find theaegion, as well as the unstable manifold of S1 being pushed
saddle point position of the BOp series. In Figa)ds shown toward the stable manifold by the torus enlargement are
the histogram with a strong sharp peak28.8 ms, 28.8 ms  shown in Fig. Tb). The torus breaks up30,31, and the
As before, for better visualization of the peak position, inHopf region evolves to the 5-en-like region(from ~B14
Fig. 6(b) is shown the contour graphs around the saddle pointip to B30, where the first return maps resemble a period-5
at (28.8 ms, 28.8 msposition. behavior, as exemplified in Fig.(@, but each branch is a
Therefore, we perturbed two different attractors in twoHenon-like attractof32,33. The increase of the size of the
different ways and we localized two saddle point positionswhole attractor continues to push the unstable manifold as
with a little difference between them, probably due to thebefore and the folds become stronger.
different systems parameters setup. Consequently, the resultsIn Fig. 7(d) it is shown the first attractor in the chaotic 1
above leaded us to postulate that the saddle point S1 existggion while in Fig. Te) it is shown the last one. Since the
at least from the stable fixed point up to the end of the chaattractors stay expanding and pushing the unstable manifold
otic 1 region, to explain the dynamics by the evolution of theof S1 against its stable manifold the folding becomes more
S1 manifolds, which are represented by the green linesomplex. In the last case the manifolds of S1 are about to
(stable manifoldl and the blue linegunstable manifoldin touch each other, which characterizes a homoclinic tangency.
Fig. 7. By closing the faucet just one more step and following the
The first region of the sequen¢B0—-B48 starts with a  unstable subseries B44 we observed that the orbits remain on
stable focus, as shown in Fig(aJ. The stable focus attracts the former attracto(B43) until the off-tangency takes place.
the orbits from the spiraling unstable manifold of the saddleThe orbit crosses the stable manifold and reaches a phase
S1. As the dripping rate goes down, by closing the faucetspace new region not accessible before, originating the cha-
the focus looses its stability22,23 becoming an unstable otic 2 region of lower dripping rate. Just before the tangency,
focus and the attractor turns into an invariant torus of in-the stable manifold is a separatrix of the chaotic 1 region and
creasing diameter, which characterizes a secondary Hopf bihe chaotic 2 one. The transition chaotie:thaotic 2, where
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FIG. 7. (Color). Evolution to a blue sky catastrophe by following the first return maps as a function of the faucet closing. All graphs are
in the same scale, except the last one. The red star represents the saddle point S1,(fredsjumes are pictorial representations of the
unstable(stable manifolds suggested by the orbits and the dynamical evolut@®ra stable focus(b) a torus in the Hopf region and the
beginning of the representation of the folds due to the torus enlargement that pushes the unstable manifold toward the statde one.
5-Henon-like attractor generated by the tangency of the torus with the unstable ma(djalue first attractor in the chaotic 1 region and in
(e), the last chaotic 1 attractor where the manifolds are close to the tangerity.wviith the off-tangency of the manifolds the orbits migrate
to the new chaotic 2 region, characterizing a chaotic blue sky catastrophe.

a chaotic attractor disappears suddenly, and the hysteresisme case, the perturbation was to take off the nozzle a little
observed are consistent with a chaotic blue sky catastroptfeom its vertical position to force the orbits to pass close to
[6-8]. the saddle point. In the other one, we just spread out the

In conclusion, we could detect a saddle point by perturb-orbits from the stable focus to observe their returning to the
ing the drops formation dynamics in two different ways. Ininitial position. Postulating that the saddle point remains
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from the chaotic 1 region up to stable fixed point, we appliedmode). The occurrence of homoclinic tangencies in the drip-
topological analysis to the sequence of attractors to charaging faucet dynamics can be one of the reasons for the rela-
terize a sudden disappearance of a chaotic attractor calledti@ns found between dripping faucets and biological systems.

chaotic blue sky catastrophe, theoretically obtained from a Financial support from the Brazilian Agencies FAPESP,
model derived from the Van der Pol oscillatéa heart CNPq, and FINEP is gratefully acknowledged.
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