
PHYSICAL REVIEW E JANUARY 2000VOLUME 61, NUMBER 1
Homoclinic tangency and chaotic attractor disappearance in a dripping faucet experiment

Reynaldo D. Pinto* and Jose´ C. Sartorelli†

Instituto de Fı´sica, Universidade de Sa˜o Paulo, Caixa Postal 66318, 05315-970 Sa˜o Paulo, SP, Brazil
~Received 20 July 1999!

A sequence of attractors, reconstructed from interdrops time series data of a leaky faucet experiment, is
analyzed as a function of the mean dripping rate. We established the presence of a saddle point and its
manifolds in the attractors and we explained the dynamical changes in the system using the evolution of the
manifolds of the saddle point, as suggested by the orbits traced in first return maps. The sequence starts at a
fixed point and evolves to an invariant torus of increasing diameter~a Hopf bifurcation! that pushes the
unstable manifold towards the stable one. The torus breaks up and the system shows a chaotic attractor
bounded by the unstable manifold of the saddle. With the attractor expansion the unstable manifold becomes
tangential to the stable one, giving rise to the sudden disappearance of the chaotic attractor, which is an
experimental observation of a so called chaotic blue sky catastrophe.

PACS number~s!: 05.45.2a, 47.55.Dz
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The theory of nonlinear dynamical systems@1,2# has
merged problems of totally different subjects in a comm
frame: the quadratic map came from population dynam
models @3#; the Van de Pol oscillator was derived from
heart model@3#; neural networks are simplifications of idea
from neuroscience@3#; methods of control of chaos hav
been applied to cardiac arrhythmia@4# and epileptic disease
@5#. A sudden disappearance of a chaotic attractor, a cha
blue sky catastrophe@6–8#, which occurs due to a ho
moclinic tangency between the manifolds of a saddle po
was found in simulations of the Van der Pol oscillator. Ta
gencies between manifolds of chaotic attractors play imp
tant roles in dynamical systems@9#; attractors which presen
homoclinic tangencies are called quasiattractors@10,11# ~ab-
breviation, of ‘‘quasistochastic attractors’’!, they are struc-
turally unstable and their applications concern the und
standing of the biological memory mechanisms@1#.

Although dripping faucets do not belong to the class
systems whose dynamics is the result of evolutionary p
cesses, as the biological systems, the time series of inter
intervals@12# has shown the same power law long-range
ticorrelations and non-Gaussian behavior presented by
time series of interbeat intervals of healthy hearts@13#. An-
other similarity between attractors of dripping faucets a
the biological ones was found in recent studies on an isola
colony of ants, where explorative behavior was stimula
@14#. Nevertheless, there is no model or explanation for
similarities found between dripping faucet experiments a
biological systems.

In 1977, it was suggested@15# that a dripping faucet could
present complex behavior. The first dripping faucet exp
ment was reported in 1985@16# and a simple mass-sprin
model was used to explain a few features of the dripp
dynamics. Since then, a wide range of nonlinear behav
has been observed, such as strange attractors@17–20#, satel-
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lite drops formation@21#, bifurcations@22,23#, crises and in-
termittencies@18,20#, long-range anticorrelations@22#, and
scale laws@23#.

As a successful and comprehensive interpretation of
drop formation dynamics by analytical models or compu
tional simulations@16,24,25# has not been achieved yet, w
have applied topological analysis to sequences of attrac
~first-return mapsTn11 vs Tn) reconstructed from serie
$Tn% of the delay time between successive drops.

The measurements were made with the faucet attache
a large reservoir, see Refs.@18,19# for details. In our experi-
ment the faucet is a cylindrical glass nozzle~3 mm inner
diameter! attached to a deionized water reservoir~800 l!. The
delay time between successive drops was measured w
time counter circuitry, with a resolution of 1ms, inserted in a
PC slot. The input signals are voltage pulses, induced
resistor, defined by the beginning~ending! of the scattering
of a laser beam focused on a phototransistor~in series with
the resistor! when the drop starts~ends! to cross the laser
beam. The width of the pulse is the time intervaltn ~wheren
is the drop number!, and the delay time between two puls
is the crossing time (dtn), of a drop through the laser beam
so that the total time interval isTn5tn1dtn . We can setup
the drop rate (f 51/̂ T&) in two ways:~a! by feeding back the
water reservoir to keep the heighth of the water level and
selecting the drop rate by opening~closing! a needle valve
driven by a step motor which is controlled by a microcom
puter. For a given drop rate we have constructed first ret
mapsTn11 vs Tn ; ~b! by fixing the opening of the needl
valve, turning off the water supply, letting the water lev
decrease naturally, and so the dripping rate. Therefore,
control parameter, the heighth of the water level, varies as
h'h02ndV/A, whereh0 is the initial height,dV the drops
mean volume, andA is the area of the water reservoir su
face. In this case, bifurcation diagramsTn vs n were con-
structed.

A little bit above 40 drops/s the water flux becomes co
tinuous at the laser-detector level. Therefore, we opened
faucet, reaching a dripping rate just before the water fl
became continuous. For an overview, we took first a ti
342 ©2000 The American Physical Society
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PRE 61 343HOMOCLINIC TANGENCY AND CHAOTIC ATTRACTOR . . .
series with the nozzle attached to a smaller reservoir~50 l!
and we turned the water supply off to obtain the bifurcat
diagramTn vs. n shown in Fig. 1. Four different behavior
were identified: Hopf, He´non-like, chaotic 1 and chaotic 2 a
a function of the water level decreasing. It was observe
sudden change in the mean drop frequency, and the o
jump from chaotic 1 to the chaotic 2 region, generating
other attractors profile.

In order to investigate the route following the success
attractors, we repeated the measurements with the nozz
tached to a large water reservoir~800 l! and turning the water
supply on. As before, we setup the system to the high
dripping rate, and we closed the faucet step by step. Im
diately after each step, we took a series 65 536 interd
times long. As we had already known that the system
quires a long time to stabilize, we subdivided each serie
an unstable subseries taking the first 16 384 points, and
stable sub-series taking the last 16 384 interdrop times
sequence of 49 stable series, named B0~39.46 drops/s! up to
B48 ~24.78 drops/s!, was obtained. In this way, we obtaine
the behaviors sequence: a stable fixed point, Hopf bifur
tion, Hénon-like, chaotic 1, and chaotic 2, as before. T
mean drop rate decreases smoothly until the end of the
otic 1 region when a sudden change in the dripping r
occurs, from 37.29 drops/s to 24.93 drops/s. After the tr
sition we went back by opening the faucet, and we foun
hysteresis of 40 steps to achieve both the transition to hig
dripping rates and the attractors profile at the end of
chaotic 1 region.

Figure 2~a! shows the reconstruction@26# ~first return map
Tn11 vs Tn) of the dynamical attractor corresponding to t
unstable subseries B44, in which the control parameter va
so slowly that one can follow the sudden change in the
tractors behavior. By tracing some orbits, as shown in sm
black arrows in Fig. 2~b!, we obtained evidences for the e
istence of a saddle point S1 at~29 ms, 29 ms! position,
represented by an open star. The gray large arrows are
representations of the unstable manifolds of S1 while
black ones are local representations of the stable manifo
To confirm the existence of this saddle point we looked fo
numerical method to extract unstable periodic orbits emb
ded in a chaotic attractor.

FIG. 1. Bifurcation diagram obtained by letting the water lev
of a 50l reservoirs decrease naturally with the dripping. The ti
series$Tn% is 100 000 drops long, but we plotted just one po
every four to let the figure clear.
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Soet al. @27–29# supposed that all points lying in a regio
around the fixed pointx* 5 f (x* ) can be transformed to$x̂n%
in the vicinity of x* to extract the unstable periodic orbi
~UPO’s! from a finite amount of data of a one-dimension
system. The density functionr̂( x̂) has inverse square roo
type singularities at the fixed points, and a histogram p
approximation tor̂( x̂) will have a sharp peak atx̂5x* .
Some spurious peaks appear inr̂( x̂) either due to singulari-
ties not related to fixed points, or due to zeros of the deri
tive of the transformation functionx̂5g(x,k). They general-
ized the method for a system with an arbitrary embedd
dimension~d! to obtain the unstable periodic orbits by doin
the transformation

ẑn5~12Sn!21~zn112Snzn!, ~1!

where

l
e

FIG. 2. ~a! First return map of the transient subseries B44.~b!
Enlarged view of the square region above. The saddle point S
(;29 ms,;29 ms! is represented by a star. The gray~black! lines
are pictorial representations of the local unstable~stable! manifolds.
The saddle point and its manifolds were inferred following the
bits represented by the smaller black arrows.



rie

e
-
y

o
a

or-
the
43-
r-

be-
n is
ss,
dle

he
in

den

o
re-
ed

to
oint.
ig.

an
th
on
in
en

st

s-
ven
o

344 PRE 61REYNALDO D. PINTO AND JOSÉC. SARTORELLI
Sn5S an
1an

2
•••an

(d21) an
d

1 0 D 1kRuuzn112znuu, ~2!

S an
1

•

•

•

an
d

D 5S ~zn2zn21!†

•

•

•

~zn2(d21)2zn2d!†

D 21

3S ~zn11
1 2zn

1!†

•

•

•

~zn2(d22)
1 2zn2(d21)

1 !†

D , ~3!

$zn% are the reconstructed vectors from scalar time se
$xn%,

zn5~zn
1 ,zn

2 ,zn
2 , . . . ,zn

d!†5~xn ,xn21 ,xn22 , . . . ,xn2d21!†,
~4!

R is ad3d random matrix in the range@21,1# andk is the
magnitude of the randomization. The fixed points are giv
by the peak positions ofr̂( ẑ). As the locations of the spuri
ous peaks depend on thek parameter, they are eliminated b
taking the averagêr̂( ẑ)& for many different values picked
up randomly. As the attractors reconstruction in tw
dimensional embedded space are enough unfolded, we

FIG. 3. First return map of the time series obtained at the tr
sition region with the faucet nozzle inclined four degrees with
vertical. The black and gray arrows represent the local directi
followed by many orbits, which allowed us to infer the saddle po
position, represented by a star, while the thin black line repres
the directions followed in the transition chaotic 2→chaotic 1. The
time series$Tn% is 16 384 drops long, but we plotted just the fir
2048 points to let the figure clear.
s
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plied this technique for the parameter values:d52. We also
usedk55, and 100 random matrices.

Therefore, the method above requires that the neighb
hood of the UPO be visited many times, but in our case
orbit pass just once close to the saddle point when the B
B44 transition occurs. We could not apply any kind of pe
turbations to push the orbits to the neighborhood of S1
cause any small perturbation on the hanged water colum
enough to precipitate the B43-B44 transition. Neverthele
we could push the orbits to the neighborhood of the sad
point by inclining the faucet nozzle four degrees with t
vertical. In this condition, both attractors are now visited
an intermittent way, as shown in Fig. 3 instead of the sud
transition shown in Fig. 2~a!. The orbits return from chaotic
2 region to the chaotic 1 region through the strong folds~thin
black line in Fig. 3! at the right of the chaotic 1 region. T
establish the saddle point position embedded in the first
turn map of the series shown in Fig. 3, we applied the fix
point transform technique developed by Soet al. @27–29#,
and in Fig. 4~a! is shown the histogram approximation
r̂( ẑ), the strong sharp peak corresponds to the saddle p
For better visualization of the peak position is shown in F

-
e
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t
ts

FIG. 4. ~a! Histogram obtained applying the fixed point tran
formation to the data shown in Fig. 3. The S1 saddle point is gi
by the sharp peak position.~b! Corresponding contour graph t
localize the peak position at (;28.3 ms,;28.3 ms!.
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4~b! the contour graphs around the saddle point at~28.3 ms,
28.3 ms! position. In Fig. 3 we have also drawn the man
folds of the saddle point, compatible with the trace of so
orbits. The strong folds of the returning orbits, represen
by a black line, is an evidence of the occurrence of a
moclinic tangency of the S1 manifolds.

We also verified if this saddle point remains in oth
higher dripping attractors. We setup the system to reprod
the B0 stable fixed point , and then we disturbed the han
water column by tapping the nozzle with the finger tip. T
orbit spread and after then returned to the stable fixed po
The returning orbits were traced, as shown in Fig. 5. W
applied again the fixed point transform technique to find
saddle point position of the B0p series. In Fig. 6~a! is shown
the histogram with a strong sharp peak at~28.8 ms, 28.8 ms!.
As before, for better visualization of the peak position,
Fig. 6~b! is shown the contour graphs around the saddle p
at ~28.8 ms, 28.8 ms! position.

Therefore, we perturbed two different attractors in tw
different ways and we localized two saddle point positio
with a little difference between them, probably due to t
different systems parameters setup. Consequently, the re
above leaded us to postulate that the saddle point S1 ex
at least from the stable fixed point up to the end of the c
otic 1 region, to explain the dynamics by the evolution of t
S1 manifolds, which are represented by the green li
~stable manifold! and the blue lines~unstable manifold! in
Fig. 7.

The first region of the sequence~B0–B48! starts with a
stable focus, as shown in Fig. 7~a!. The stable focus attract
the orbits from the spiraling unstable manifold of the sad
S1. As the dripping rate goes down, by closing the fauc
the focus looses its stability@22,23# becoming an unstable
focus and the attractor turns into an invariant torus of
creasing diameter, which characterizes a secondary Hop

FIG. 5. First return map of the B0p series obtained by tapp
the nozzle with the finger tip to destabilize the B0 stable fixed po
The black and gray arrows represent the local directions follow
by many orbits~thin black lines!, which allowed us to infer the
saddle point position, represented by a star.
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furcation. A torus attractor~subseries B10! from the Hopf
region, as well as the unstable manifold of S1 being pus
toward the stable manifold by the torus enlargement
shown in Fig. 7~b!. The torus breaks up@30,31#, and the
Hopf region evolves to the 5-He´non-like region~from ;B14
up to B30!, where the first return maps resemble a period
behavior, as exemplified in Fig. 7~c!, but each branch is a
Hénon-like attractor@32,33#. The increase of the size of th
whole attractor continues to push the unstable manifold
before and the folds become stronger.

In Fig. 7~d! it is shown the first attractor in the chaotic
region while in Fig. 7~e! it is shown the last one. Since th
attractors stay expanding and pushing the unstable man
of S1 against its stable manifold the folding becomes m
complex. In the last case the manifolds of S1 are abou
touch each other, which characterizes a homoclinic tange
By closing the faucet just one more step and following t
unstable subseries B44 we observed that the orbits remai
the former attractor~B43! until the off-tangency takes place
The orbit crosses the stable manifold and reaches a p
space new region not accessible before, originating the c
otic 2 region of lower dripping rate. Just before the tangen
the stable manifold is a separatrix of the chaotic 1 region
the chaotic 2 one. The transition chaotic 1→chaotic 2, where

g
t.
d

FIG. 6. ~a! Histogram obtained applying the fixed point tran
formation to the data shown in Fig. 5. The S1 saddle point is gi
by the sharp peak position.~b! Corresponding contour graph t
localize the peak position at (;28.8 ms,;28.8 ms!.
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FIG. 7. ~Color!. Evolution to a blue sky catastrophe by following the first return maps as a function of the faucet closing. All grap
in the same scale, except the last one. The red star represents the saddle point S1, the blue~green! lines are pictorial representations of th
unstable~stable! manifolds suggested by the orbits and the dynamical evolution.~a! a stable focus.~b! a torus in the Hopf region and th
beginning of the representation of the folds due to the torus enlargement that pushes the unstable manifold toward the stable~c! a
5-Hénon-like attractor generated by the tangency of the torus with the unstable manifold.~d! the first attractor in the chaotic 1 region and
~e!, the last chaotic 1 attractor where the manifolds are close to the tangency. In~f!, with the off-tangency of the manifolds the orbits migra
to the new chaotic 2 region, characterizing a chaotic blue sky catastrophe.
re
p

rb
In

ittle
to
the
the
ins
a chaotic attractor disappears suddenly, and the hyste
observed are consistent with a chaotic blue sky catastro
@6–8#.

In conclusion, we could detect a saddle point by pertu
ing the drops formation dynamics in two different ways.
sis
he

-

one case, the perturbation was to take off the nozzle a l
from its vertical position to force the orbits to pass close
the saddle point. In the other one, we just spread out
orbits from the stable focus to observe their returning to
initial position. Postulating that the saddle point rema
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from the chaotic 1 region up to stable fixed point, we appl
topological analysis to the sequence of attractors to cha
terize a sudden disappearance of a chaotic attractor cal
chaotic blue sky catastrophe, theoretically obtained from
model derived from the Van der Pol oscillator~a heart
ce
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model!. The occurrence of homoclinic tangencies in the dr
ping faucet dynamics can be one of the reasons for the r
tions found between dripping faucets and biological syste
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